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Structure of electrohydrodynamic shock waves is investigated using the most 
general form of Ohm’s law I viz. the complete equation of charged particle 

momenta, It is assumed that outside the wave structure the parameters are 

defined by the conventional Ohm’s law. Additional equations are derived for 

closing the relationships at the electrohydrodynamic discontinuity. Various 

mechanisms of surface charge formation at the wave front are investigated. 
It is shown that the convection term and the ion pressure gradient do not con- 
tribute to the formation of surface charge. Allowance in the equation of mo- 

menta of charged component of the thermal diffusion term and of the term 

which defines the effect of the mixture viscous morn~~rn transfer on ion dif- 

fusion in the electric field yielded new supplementary relationships at the wave 
front, which differ from those obtained in El, 23. 

1. Statement of the problem. The structure of electrohydrodynamic shock 
waves was investigated in [l ,2] with the aim of obtaining a supplementary equation 
for closing the system of relationships at the discontinuity in the case of absence of 

surface current at the wave, The model of medium was used there with Ohm’s law of 

the form 

j* = q*(u* + bE*) (f.l) 

where j* is the density of electric current, Q * is the density of volume charge(we 

assume that there is one kind of positively charged particles, ions, so that q* > 0), 
u* is the velocity of mediums b is the coefficient of ion mobility, and E* is the 

vector of electric field intensity. 

Equation (1.1) follows from the equation of motion for the ion component 

--$-&v* + v$ + div [p)v*v* -j-n:--- $(v* -~*)(v*--u*)]- (1.2) 

q*E* = .f) 
R(1). - b-1 [q*u* _ 

2- 
j* - q*DtVT* + q*D,E*W*] 

j* = q*v*, pi” = e-lkq*T* 

where Pi_:, v*, pi*, and ni” are, respectively, the density, velocity, pressure, 

and the viscosity stress tensor of the ion component, e is the charge of an ion, T" 
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is the temperature, Wrs* are components of the 
and k is the Boltzmann constant. 

tensor of the mixture strain rate, 

Equation (1.2 ) was obtained from the Boltzmann kinetic equation for the ion 
component ; the temperature, pressure, and the tensor of viscosity stresses of ions are 
defined by particle random velocity determined by the mixture mean velocity. Co - 

efficients b, Dt, D,, and all remaining transport coefficients used below are deter - 

mined by Grade’s method in the thirteen moments approximation, as given in [3 1. 

The shock wave structure is investigated here using Eqs. (1.2) instead of the 
usual Ohm’s law (1.1). 

Let us consider the steady flow of medium in an electric field, and select the 
system of coordinates in which the x: -axis is directed downstream. We assume that 
all quantities depend only on 5 and that the medium and ion velocities, and the 
electric field have the components only along the 2 -axis. In dimensionless form 
the equations that define such flow with allowance for the medium viscocity and ther- 
mal conductivity are 

3 T +a”_.+--_ SEZ- n 
(1.3) 

d5 y,*1 f u * 

(~-1~~~~;P~ 
s +++ = (~_;~~~fz T+$ul+ (1.4) 

1 

ZSJ(cp - cpl) --* 

dEldL-mq, dcpldc- -E 0.5) 

p(T-qy+ -J t_ q (u -t E) + -;-m,qE s - (1.6 1 

4 (v + Eat) s 

P f’T, pu 1 (1.7) 

rr, ~~ n - EO,,, z, z - &Wt (1.8) 

4 dU 

I 
(‘It rz mu+ 

1 dl’ 
‘%A= 3 q- c=?., ’ (y - 1) ,11; Pr d5 c=:, 

II=1 i-+-w, r=++ (v__:l_lrl 
1 1 

Equation (1.6 ) of ion motion has been transformed using the penultimate of 
Eqs. (1.2 ) and, tensors of viscous and diffusion stresses of the ion component are neg- 
lected . 

In these equations the dimensionless parameters are defined by formulas 
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and 

where p* and P* are the medium pressure and density, v* is the electric poten- 
tial, cp and c, are specific heats, and q and h are coefficients of visc~ityand 
thermal conductivity of the medium. In this case the equation of continuity for ions 
implies that j* = const. Quantities II and 2 in Eqs. (1.3) and (1.4) are con- 
stants of integration determined by flow parameters at some point 5 = & , and at 
that point are denoted by subscript 1. Below we consider the fiow of a weakly ionized 

gas (Pi* I P* < 1). 
Using the results obtained in 131, for a, and at we have in this case 

bl* = 0.25 (1,2Ci*, - i), c1 = 0.25 (1 -O&4;& cl* = 1 + O&A; 

fl* = 5.5 -j- 1.6R$ - 1 .2BTG 

where Qao and Qia are transport cross sections of elastic col~sions of neutral par- 
ticles between themselves and of charged particles with neutral ones, respectively, 
Formulas for QDte and for A=,*, Bap*, and Cop* appear in [3 1. When particles 
interact as elastic solid spheres, the last three quantities are equal unity. These quan - 
tities were determined in [4,53 for other interaction laws and various gas mixtures ( *) 
For molecules with a Maxwellian interaction potential cia* =6/11 so that at = a, =O, 

We shall solve the problem of the electro~ydrodynamic shook wave structure as 
formulated in [2, 6, 7 1. It follows from the first of Eqs. (1.5 ) that the flow is every- 
where nonunifo~ when 4 # 0. It is assumed that a zone I’ (t < 5 < 5s) in 
which the flow parameter gradients are considerable in comparison with those outside it, 
exists in the Bow region. The variation of parameters in the zone of considerable gra- 
dients is called the structure of shock wave. In the considered one-dimensional problem 
it is possible to use the characteristic quantities for making up several conbinations 
(1,lO )of dimension of length It was shown in f2, S] in the ~v~~gati~ of the wave 
structure determined by viscosity and thermal conductivity of the medium that the char- 
acteristic dimension of the structure zone is of the order of length I, while the char - 
acteristic dimension of flow parameter nonu~formity is of the order of length L, Let 
us clarify the physical meaning of length 2d. In the case of weakly ionized gas,using 
the formula given in [3 ] for the mobility coefficient, we can write 

+) See also the paper by Iu. N. Beliaev , V. A. Polianskii , K. V. Romashina, 
and E. G, Shapiro , Transport phenomena in gases and gas mixtures ) pt e 1. collision 
Integrals. Report of the Institute of Mechanics of MGU, No, 1802 e 1976. 
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where. m is the mass of an ion, Tia is the effective time of mean free path run of 
ians I and z+* is the ion thermal velocity. It isseen from (1.12) that the order of 

rna~l~de of iii is the same as that of charged particles mean free path li . 
The ratio of lengths Id / 1 (inverse of the Schmidt number ) depends on the 

cross sections of particle collisions and in this case is 

For many gas mixtures this ratio is small owing to the considerable difference 
between collision crass sections, 

We assume that parameters e < 1 and p 9: 1, and select points & and & 
outside the 1’ -zone close to points & and <a , respectively. Equations (1.3 1, 

(1.4 1, and (1.6) show that in the flow regions S “-;- t r and 5 > c4 , where the 
de~vativ~ of velocity p temperature, and charge density are of order unity, the macro- 

scopic parameters are linked by formula( X,1) to within quantities of order t: and p t 
and by integrals of perfect flow which obtain from (1.3 1 and (1.4 ) by equating the 
right-hand sides of these equations to zero and setting 11, == IX and X:, Y:, The 

problem of ele~~ohydrodynaml~ wave structure consists of de~~rni~~g the integral 

curves of system (1.3 > - (1.7 ) which connect regions 5 6, jr and 5 ;,> & of per- 
fect flow, 

The qualitative analysis of behavior of such integral curves is presented below 
with successive calculation of terms in Eq, (1.6 ). The case in which charged particles 

move downstream (j* > 0) is considered, hence J :== 1 . It is assumed that the 

parameter of elec~ohydrodynamic interaction is small (S < 1) v hence the effect of 
the electric field on the motion of mixture is small and the Schmidt number 6-r ,> i. 
Weset the Prandtl number Pr - 0.75. Then, as shown in 181, Eq. (1.4) can be in - 
tegrated, and instead of (1.3 ) , (1.4 > , and (1.6 ) we obtain for the problem of wave 
structure for small S the equations 

(1,141 

The equality Ls ‘.:c 0 obviously follows from the integrals of perfect flow. 
The second of Eqs, (I. 14 ) and the first of Eqs. (1.15 1 and of Eqs. (1.5 1 con - 

stitute a closed system of equations for U, 6, and ‘I. Since the independent va - 
riable does not explicitly appear in the right-hand sides of these equations, it is con - 
venient to analyze the behavior of integral curves if equations in the uE~ -space. 
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Eliminating in equations the variable 5, we obtain 

CQ i du == jr, jr := L1 / a&L3 

dE I du = ji, ji =I Eq / L2 

dE/dq --- pqL,IL, 

0.16) 

(1.17) 

(1.18) 

Since by assumption q” > 0 and u* > 0, hence the integral curves of 
the systems of F@. (1.16 ) - (1. iS ) , which have a physical meaning lie in the region 
y>Oand u>O of the uEq -space, and from the solution of the problem or 
gasdynamic shock wave structure for small S follows that the velocity of gas can 

varywithinthelimits p<u<1. 
The friction force Ri(lf between the ion and neutral components, which ap - 

pears in Eq. (1.2 ) of ion motion, was determined by Grade’s method in linear approx- 
imation with respect tostreams [3]. The linear approximation is valid when the char- 
acteristic lengtbs of macroscopic parameter variation exceed the mean free path of 
particles, Such conditions may not be satisfied in the problem of shock wave structure. 

It should be noted, however, that the analysis of the structure of conventional gas - 
dynamic shock waves by means of the Navier- Stokes equations yields for low intensity 
shock waves the results that are in a fair agreement with those obtained by methods of 
kinetic theory l Hence it is possible to co~de~the use of Eqs, (I.. 2 ) for determining 

the processes taking place inside the wave structure to be justified, at least for low 

intensity shock waves, 

2. Shock wave structure with allowance in the equation of motion of the char- 
ged component for the ion pressure gradfent and for the convection term. Let us in- 
vestigate the shock wave structure in a gas of Maxwellian molecules (a, = ai = 0). 
Since the quantity 1 L, 1 ,( 1 lies in that region of the uEq -space where lie the 
integral curves of Eqs. (1.16 ) --(l. 18 ) that have a physical meaning, it is possible to 

disregard in the formula for L1 the term with 6L, as being smaller than unity. 
We construct in the Z&‘Q -space the planes u = 1 and u=p (Fig.11 

and denote these by La”. We draw in these planes hyperbolas ri” (i = 1, 2, 3, 4) 
whose equations are 

q r= A- (1 + E)-1, q -- + (p + B)-l 

and whose asymptotes E = -‘I and E = - p are vertical and lie in the plane 
E = - u. Hyperbolas I’; and ra“ are in that part of the uEq -space in 

regions of physical space outside zone r of large gradients in which the electric 
current j* > 0 and hyperbolas rs’ and r,’ lie in that part where i* < 0 
(J = -1). 

In the space comprised between the planes u = 1 and u = @ we con - 
struct surface L,” defined by the equation L, z ---I + q (u + E) = 0. That 
surface intersects the planes u = 1 and u = b along hyperbolas r ;” . The 
intersection of surface Lx0 with planes f;,* =1 const is along hyperbolas 1,” which 
are defined by the equations Q = (u -/- E)-i with E = eon&. When E >---fit 
the vertical asymptotes lie in region it < p, while for -1 < E \< - j3 they are 
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in region fi 6 u << 1. It will be seen that all these asymptotes are in the plane 
u = - E which separates surface L, in two parts that correspond, respectively, 

to the positive (u + E > 0) and negative (u + 1F: < 0) electric current in re - 
gions of the physical space outside zone r . Above surface LID we have L, > 0, 
and below it J% < 0. Equations (1.16 ) and (1.17 ) show that the integral curves inter- 
sect surface LID in the planes q = const. The plane u = PI/t divides the con- 
sidered region into parts that correspond, respectilvely, to supersonic (u > p”2) and 
subsonic flows. The relative position of surface Llo and the cylindrical sur- 
face Ls” .(the latter defined by the equation -L, = 0) whose gereratrix is parallel 

to the E -axis can vary depending on the number Mr. 

Fig. 1 

We 

E1 

A 

denote by 1,’ the line of intersection between surface L," and some planeE = 
const. Surfaces LSD and Ll" intersect in region p < U < 1 along the line 

B== (Fig. 1) . The coordinates of points A and B are defined by 

UA = /3, EA = qAel - fl, qA = y’/’ Ml [I + ‘/z(y - 1) x (2.1) 
Ml2 (1 - /3”)]-“2 

UB = 1, EB = - 1 + y-‘/z Ml-l, qB = y’h Ml 
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At the part of surface Lx” that lies below the line AN, the quantity Ls 

to, while at points Llo above line AB the quantity I;, >O. If Er > EA 
or El< Eg, lines lr” and Iso do not intersect in region 6 ( u ( 1, and in 
the first case 1; lies in the region where L, < 0, while in the second Ls > 0 

at points I,” . At points which do not lies on line AB the integral curves inter- 
sect surface L3” where the tangent vector is directed along the q -axis. 

Let ds? = rlrr2 -/- dE2 + dQ’ be the square of an arc element of the integral 
curve, The directional cosines of the vector t (a,, %, %f tangent to the integral 
curve are of the form 

a1 = &c/c& = -F_ (1 + f12 -t_ f~2)-‘r2, a2 = dEfds = alfi (2.2) 

a, = dq Ids = al fl 

The sign of al depends on the direction of motion along the integral curve. 
We shall consider positive the motion (with aI > 0 ) in the direction of increasing 

U. To obtain a fuller picture of the integral curve behavior we shall, also, analyze 
the order of integral curves with respect to parameters E and p of torsion X using 
formulas [9 ] 

x = A.,-‘A 2, A1 = (a@+(r) _. ,(qp))2 + (EWufl) _ f94&2))2 + (2.3 1 
(&$q+l) _ ~(l)p)z, “l(n) = pA / &$!I 

The quantity A* is a third order determinant whose rows are of the form (~(“1, EC”), 
‘I(~)), tz = 1, 2,3. In the region where (I <e-l and L, is within the limits 

5<ILrl<e-’ we obtain from (2.3 ) the estimate 

x - E 1 L, 1 (E?@ + L*Z)-1 (2.4) 

If L, = 0 (p), from (2.3 ) we have 

X - E 1 L, 1 (E’q” + Ls2)-’ (Eq + 1 L, I)‘-’ 
(2.5) 

It will be seen that the sections of integral curves which lie in regions where 

a< e-l and Ls = 0 (1) are flat, since there X - E. 

Let us establish the direction of vector ‘C at an arbitrary point away from sur- 
face Lr”. When q 4 E-' and IL,ISZ:E, we have fl = 0 (8-r) and fi 3 E. 

Formulas (2.2) show that a, = 0 (6), cli = 0 (~fi),. and a3 = 0 (1) and the tan - 
gent vector is directed along the Q -axis ) hence away from surface L," the slope of 
integral curves is close to vertical. At points of surface Lr” away from L2" we have 

a, = 0 (i), a2 = 0 (E), and a3 == 0 and the integral curves intersect surface 

L,” where the tangent vector is directed along the u -axis. 

Let us consider the behavior of integral curves in region fi < u < 1, E -/- 

P, > 8. It follows from (2.2) that away from surface L,” the quantity fs = 

O(E) when q< 8-l , hence, along the integral curves dE / & = 0 (e) the 
electric field varies slightly in the indicated regions, and each integral curve lies in a 
small neighborhood of the related plane E = const. 

Let us determine in region fi < u < 1 the projection of the field of inte - 
gral curves onto any plane E = E, (Fig. 2). Above surface L,” under surface 

L 3o , the quantity .fl >o. The integral curve slope relative to the u -axis is 

positive. The slope changes its sign at points of surface &” . 
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Below surface Lr’, the quantity l’, < 0 and the slope of integral curves relative 
to the zt. -axis is negative. As already indicated, the slope of integral curves away 
from surface Lr3 is close to vertical when 6 is small. 

Let us consider the integral curve passing through an arbitrary point n lying 

below and away from curve IID (type II integral curve ). At that point its slope 
relative to the u -axis is negative and close to vertical. The integral curve tends to 
approach curve Ilo from below, but cannot intersect it since an intersection is only 
possible at zero slope, for which it is necessary that fr changes its sign in the region 
below 1,“. Because of this the integral curve turns and runs in the small neighborhood 
along curve Zr” with a finite negative slope, 

14 

L 
Fig. 2 Fig, 3 

An integral curve of type III which passes through point b lying above and 
away from curve ii0 has at that point a positive slope relative to the u -axis and 
is close to vertical. integral curves of type III , unlike the type II curves, inter- 

sect curve El0 with zero slope beyond which the slope becomes negative and the in - 
tegral curve runs in the small neighborhood of ~?r’ along it. Since a single integral 
curve of Eqs. (1.16) and (1.17 ) passes through each point, there exists in the considered 

region an integral curve (a separatrix) that passes in the 6- neighborhood of 11” and 

separates these two sets of integral curves (curves 1 in Figs, 1 and 2). The separatrix 
and integral curves lying close to it join the neighborhood of lines u = 1 and u = f3, 

shown in Fig. 2 by arcs of circles, 
Let us consider the small neighborh~ds of planes u = 1 and u = fl in 

region B<u<i. If [L,I>,P and L, = 0 (e3), then, as seen from (2. Z), 

du/cls<aE”. Estimates (2.4) and (2.5) show that then r.68. hence in the small 
neighborhoods of planes u==l and U;=B lie flat sections of integral curves 
that run along these planes. To establish the qualitative pattern of behavior of such 
flat integral curves we, first ) determine the projections of these onto the planes u = 1 
and u = fr (Fig. 3 ). These integral curves are defined by equations derived from 
(1.18 ) by the successive abstention in the expressions for L1 and Ls of IJ = 1 and 

u = 6. The hyperbolas 1s ,2 are evidently zero-slope isoclines, while the lines 

of intersection of surface I;,O with planes U=l and u = fi are vertical isoclines 
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of the integral curves of these equations. When Q 4e-l , the slope of integral 
curves away from line I&) is close to vertical, since 11 4 1. In the [1-, neigh- 
borhood above hyperbola Iii*) there are two sets of integral curves divided by a sep- 

aratrix . Integral curves of one set (II) run along hyperbola Tq12) with decreasing 

E . intersect it and go down: curves of the second set (III) do not intersect T& 
and go upward. The separatrix which runs along hyperbola I’&, in the f~ -neigh - 
borhood above it is shown in Fig. 3 by the heavy line (I ). Point c at which L, = 0 
and L,=O is a singular point of Eq. (1.18). Analysis shows that it is of the saddle 
point kind, and that the separatrix f is one of the singular solutions. To the left of 
point c the separatrix lies below hyperbola I’&). 

The integral curves passing through points lying in the 11 - neighborhood of 
lines r;@) above the surface L,O in region b < u < 1 and close to planes L,’ 
in their e3 -neighborhood behave similarly, forming in that region a bundle around 

r” lf.2j from which branch out integral curves which run into region fi < u < 1 . 
The direction of motion is indicated in figures by arrows. These directions cor- 

respond in the physical plane to the downstream motion. They are determined by the 
first of Eqs. (1.5) which implies that when q > 0 the electric field always increases 
downstream, and from the second of Eqs. (1.14 ) follows that velocity in the region 

B < u < 1 decreases downstream. 
Let us consider one of the integral curves that branch from the plane u = 1 

into region j3 < u ( 1 at a certain intensity El > - fi of the electric field 
(curve I in Fig. 4). It follows from (2.5) that with increasing L, the quantity X 

first rapidly increases ( X, - E-l when 1 .f& 1 - E ) and then decreases (when 

1 L2 I> 8, x - E ). In accordance with what was said above this means that the 

integral curve passes from the plane u = con& to the plane E; = con&,, and that 

such passage is accompanied by a fairly small variation of U. Let us consider the 
pattern of parameter variation along the integral curve. It follows from (2.2) that when 
the motion is in the direction of decreasing u (al ( 0) the quantity Q must de - 
crease in the region of Lr > 0 (above L;), L, < 0 (to the left of 

u = g), and L, < 0 (below Lao). Since in the motion along surface Lx0 in 

the plane E = con& in the direction of decreasing u the quantity 4 increases, 
hence the integral curve must intersect surface L1” at some point close to the plane 
u =1. 

Behavior of the integral curve in the plane E = const was considered above, 

and it was shown that it runs in the 6 -neighborhood of line I,* in the region where 

L, < 0 (section 2 of curve I in Figs. 2 and 4). In approaching the plane u = @, 

-?& decreases and X begins to increase, Formula (2.4 ) shows that when 1 L, f 
- 8 , the twist 31 is of order unity. and the integral curve deviates from the plane 

E = con& in the direction of increasing E , as can be seen from the second of 

Eqs. (2.2). With further approach to the plane u=@ * the quantity X becomes 

again small, and the curve passes from the neighborhood of the plane E = const to 
that of the plane u = const. However motion in the direction of considerable E 

(and smaller u and a1 < 0 ) under surface LIo is impossible, since the de - 

rivative dqlds>O when L, < 0 , and when u = const the quantity q 

decreases on surface .l.,,’ when E increases. The integral curve must, consequently, 

intersect surface LIo near the plane U =p. After that it runs in the e3- neigh- 
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borhood of that plane in the p -neighborhood of line rsb and along it, (section 3 

of curve I ). 
We denote by Ai&, ACE and AC, the characteristic distances in which 

the velocity) the field, and the charge density, respectively, vary by virtue of the 

second of Eqs. (1.14), the first of Eqs. (1.5 ) , and the first of Eqs. (1.15 ) by an order 

of unity. In sections 1 and 3 of the integral curve I near lines rr ,s” the lengths 

AL,, - EW2, ACE - 1, A1;, - 1, since there 1 L, 1 - 6’ and L, - cl. 

Fig.4 

In the physical plane these sections correspond to a supersonic ( 1) and a subsonic ( 3 ) 
flow at constant velocity, where the contribution of the pressure gradient and of the con- 
vection term in Ohms law is negligibly small, and the variation of the field and den - 
sity of charge are related by formulas 4 = (n + E)-r, u = 1, and u =~ p to 

within smalls of order p . In section 2 which runs in the &,neighborhood of line I,” 

the lengths A<, - e, A& - E, ACE - 1, since there j L 1 - 6 and I L, I 
- 1. In the physical t: -plane that section corresponds to a flow region of 

order E in which the charge density and the velocity (and consequently the gas temp- 

erature and density ) vary considerably, while the variation of the electric field is 
small. This section specifies the flow structure in region 1‘ of considerable grad - 

ients, since there the derivatives U’ - c-’ and (I’ < c-1. Thus the integral 

curve I connects’ regions 5 _ _ CL and 5 & of perfect flow, and defines the 



Investigation of the structure of electrohydrodynamic shock waver 1061 

structure of a shock wave along which the electric field is constant 

E z= El = const (2.6) 

So far we considered the case when line 11” in whose 6 - neighborhood 

passes the integral curve, does not intersect in region fi < u < 1 line I,” of the in - 

tersection of surface L,” with the plane E =;f E,. The condition for the electric field 

intensity E, ahead of the wave front, when the opposite case is realized, is of &e 

form E, < E1 <EA. We denote by u* and q* the velocity and charge density 
at the point of intersection of curves I,* and 1,’ with the corresponding electric 

field intensity E, . Then q* -=g c-1 and, when 1 L, (u.J 1 $+ E, then in the neigh- 

borhood of the intersection point (u*, E,, q.J the field of integral curves is flat, The 

point (u*, E,, q*) is singular and of the kind of focus of Eq. (1.16) (Fig. 5). 

Fig. 5 Fig. 6 

The method described above can be used for showing that in region lJ < % 
there exists above line I,’ the separatrix II which separates the integral curves 

running upward from those that intersect line 11’ and run downward. Integral curve 

II in approaching the plane u = j3 diverges from the plane E = EI and moves 

toward considerable E, it intersects surface Lr” and runs under it in the p -neigh- 

borhood of line I’s0 in the direction of increasing E. In region u>u* thein- 

tegral curve I is a separatrix. Both separatrices curl around the singular point, Thus, 

when EB<E,<EAt no continuous line connecting regions of supersonic and subsonic 

perfect flows exists. It is however possible to derive a solution defining the wave struc- 
ture by inserting inside it a jump of electric charge density from point kr (%, El, Q& 

of the integral curve I to point k, (u*, E,, q*J of the integral curve II at constant 

values of velocity and electric field, The structure of such jump can be obtained by 

introducing in the analysis one more dissipation mechanism, viz. the viscosity of char- 
ged particles. In the case of small 8 considered here intensity of that shock is small. 
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Let us now consider the case when the initial intensity of the field ahead of the 
wave front satisfies the conditions -B > El > - 1 and E1 < Ea (curves 1,” 
and ZsO do not intersect in region 13 < u < 1). Let us investigate the behavior of 

integral curve 111 (Fig. 1 ) which runs in the p -neighborh~d of line ri* under 
the surface Lx0 (since in this case L3 2 0 ) and moves away from the plane 

u = 1 when the initial field intensity is E = E,. That curve intersects surface 
L,” in the t’ -neighborhood of the plane 1~ = 1 with its tangent vector in the plane 

4 = con&, then runs along line I[” in its 6 -neighborhood above surface L,” 
in the direction of decreasing II- Within the considered range of field intensities 

(-1 < Ii:, < - B) the vertical asymptote of line l:, which lies in the plane 

?,t, _t zi =o, is inside region p < u < 1. Because of this lines ILo and I’s 

do not intersect and, when 23, < - p , the integral curve III which runs along f,” 
cannot approach line rs” so as to bring the order of magnitude of L, to that of F. 

But, when the integral curve runs along 1,O it approaches the plane u f E _7 0 
and then the quantity 4 evidently increases. 

Let us investigate the direction of the vector tangent to the integral curve when 
the order of magnitude of ‘I’ becomes c-l. From (1.16 ) and (1.17 ) we have fl = 

0 (I) and fz =- 0 (1). Consequently all ei are of the same order, since (2.2) 
implies that a1 := 0 (1). Estimate (2.4 ) shows that the twist X remains small, 

The integral curve when passing along i,” approaches the plane u i- E y 0 and 

gradually diverges from the plane i:’ == I:‘, in the direction of increasing R (Fig, 1). 

The points of surface L,’ at which ‘1 - a-’ lie in the F -neighborhood of the 

plane u m! E L 0. Hence the integral curve which for these values of 4 runs along 

surface /.,” runs by the same token along the plane u -i-- E = 0 and can approach 

the plane u = P so as to bring the order of 1,~ to E. When 1 f’2 1 -e and 
(I -&--I , components UY and (x:3 of the tangent vector are of the same order, and 

*i == 0 (8) is a tangent vector collinear with the plane tt. := p_ The integralcurve 

intersects surface L,,’ near the intersection line of planes u .-{- Iii‘ == o and u = p , 

and then runs along the plane 16 : B under surface lsl’ close to line Tzo in the dir- 
ection of increasing E. 

It can be shown that, as previously, sections 4 and 7 of the integral curve 111 
correspond in the physical plane to supersonic and subsonic flows subjected to Ohm’s 
law of the form (1.1). Section 5 where 4 - j and L, - 6 corresponds in the 
physical plane to a narrow region of considerable variation of u and Q and other 

gasdynamic parameters with small variation of the electric field. In section 6 where 

4-e -1. and L, - 6 we have AC,, - e, A.& - E, A<, - F. 
Consequently this section corresponds to a narrow region of abrupt change of all flow 
parameters. Projection of the integral curve III onto the plane y = 0 is shown in 

Fig. 1 by the dash-dot line (curve IV ), 
Thus, when the initial electric field intensity ahead of the wave front satisfies 

the condition 

- 1 < E, < Ed (2.7) 

it is possible to construct a continuous integral curve which connects regions 5 r< 51 

of supersonic and 5 > 5, subsonic perfect flows and defines the shock wave struc- 
ture in a varying electric field. The field intensity E, behind the wave front is, 
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related to velocity by the expression 

Ua -+- E, z.z 0 (2.8) 

When the initial field intensity is 

En<&<- B CAQ) 

it is not possible to use the model considered here for constructing a continuous struc- 
ture, since then there is inside region 0 < u < 1 a point of intersecti on of curves 

4O and aso which for finite Q represents a kind of focal point of integral curves 
that pass there close to the plane E = E, = con& The position here is similar to 
that considered above. It is pcssible to determine the structure by introducing in the 
neighborho~ of the singular point a shock of cf at constant velocity a and electric 
field intensity, Such jump can be smoothed by complicating the model of medium 
by the in~oduction of viscosity of charged particles. 

The allowance for the gradient of charged particle pressure in Ohm’s law yields 
for the electric field at the wave front the same relationships and conditions as those 
that are valid in the case of application of the conventional Ohm’s law (1,l) [Z] , 
Allowance for the convection term makes it impossible in some cases to obtain a con- 
tinuous structure, although the relationship at the wave front remain unchanged. 

a e ahock wa~e8~o~ra with amvaaa for thr vernal ~~~~ tm fn ~hm’8 law. 
Relationships of a new kind for the electric field at the. wave front are obtained by all- 
owing in the formula for L, (second of formulas (1.15) ) for thermal diffusion terms 

(q#O). First,weset p =O and a, =O. The input system of equations 
then reduces to the single equation 

dE 
-=** dU 

L4 = E -t u + a (u - l)(u - @f @*II 

a = 3 (y” - 1) Mr%t i sy 

We shall analyze Eq. (3,l) in the uE -plane. We construct in region u > 0 the 
lines I&” and La0 whose equations are, respectively, L, =: 0 and L, = 0. 
These lines are indicatrices of vertical directions of integral curves of Eq, (3.1). Line 

L4” is a parabola which passes through tne intersection points of lines 16 =j and u= 6 
with line u + E = 0. The coordinates of the parabola vertex are 

If the Mach number M1 ahead of the wave front satisfies the condition 

the parabola vertex lies to the right of line ZL = fi. 
The qualitative pattern of behavior of integral curveS of Eq. (3.1) is shown in 
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Fig. 6 for the case when a > 0 and the inequality (3.3 ) is satisfied, 
Let us consider the integral curve 1 (Fig. 6) which passes near the initial point 

(I, El) when El < E,. Section 1 of that curve which passes in the E -neigh- 

borhood of line ZJ = 1 , to which in the physical plane corresponds a perfect supersonic 
flow at constant speed with variables E and 4 satisfying Ohm’s law of the form 
(1.1). In the E -neighborhood of point (1, E,) integral curve I deviates from line 

u = 1 and runs with a small negative slope in the direction of decreasing u (section 

2 ). When approaching Une L4’ the curve turns and then runs along that line in its 
E -neighborhood in the direction of increasing E (section 3 ), because it cannot 

intersect line La” with a vertical slope without changing the sign of slope. Having 

reached the E -neighborhood of the parabola vertex (u,, Eltl), the integral curve 

then runs with a small negative slope and approaches line u = fi (section 4). Then 

the slope increases in the E -neighborhood of point (@, E,) and the curve runs along 
line u =@inits E -neighborhood (section 5 >. It follows from the equation dIS i 

dc = L,-l and the second of Eqs. (1.14) that in sections 2 and 4 the characteristic 
lengthsA.5, - e,andALE - l,since there 1 L, 1 - 1 and L, N 1, and in 

section 3 the lengths At, < E and A 5~ - E, since there 1 L, 1 - 1 and L, - E. 
Hence in the physical plane narrow flow regions with considerable velocity variations 
and a nearly constant electric field of intensities El and E, correspond, respectively, 

to sections 2 and 4, Section 3 corresponds to a narrow region of considerable variation 

of velocity and electric field with intensity E changing from close to El to close 

to E,. Section 5 corresponds to a perfect subsonic flow. 
The integral curve 1 , thus, describes the variation of velocity and electric field 

in the shock wave structure at whose front a surface charge is produced by the thermal 
diffusion process. The field intensity behind the wave is related to parameters of flow 
ahead of the wave front by the formula 

E, = E’, (3.4) 

where E, is defined by the second of formulas (3.2 ). The surface charge intensity 

is o = (E, - E,) ul*/4nb. 
It will be seen from Fig. 6 that thesurface charge at the wave front can be pro- 

duced by thermal diffusion only when the Mach number ahead of the wave satisfies con- 

dition 3 and the initial field intensity Er < E,. The second of formulas (3.2 1 im - 

plies that E, > 0 when M, > M,, where IF, is the greatest root of the equation 

E, = 0 which is biquadratic with respect to Ml, and M* satisfies condi~on 
(3.3 ), since then a > (1 -- b”z)-“. This means that contrary to conclusions reached 

in [I, 2 1, in this case a surface charge can be produced not only in a retarding field 
(E’, < 0) but, also, when the ions are accelerated by the field (E, .> 0). The in - 

tegral curve II in Fig. 6 relates to a positive field ahead of the wave front. In the 
case of the model of particles in the form of elastic solid spheres at = 0.61. Ify = 4.4, 
(3.3 ) is valid for ii/f, > 2.94, while E, > 0 when M, > 4.65. 

Note that when theinitial field intensity E, < -6, the allowance for thermal 

diffusion and ~lfilrn~t of (3.3 ) results in the generation of an additional surface charge 
which is higher than that generated by friction between ions and the neutral component 

taken into account in [2). 
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4, Shock wave ttructure with allo~m~~ fn ohm9 law for the pr#rure, gradient, 
the convactfan term, rad thmml doffs, The analysis of integral curve behavior 
of Eqs, (1.14) and (1.15 ) in Sect. 2 has shown that, when up = at = 0, the allow- 
ance in Ohm’s law for the convection term and pressure gradient does not provide new 
r~latio~~ps at the shook wave frontdifferentfrom those that obtain when Ohm’s law is 
used in the form (1.1) (p = 0) , except for the following singularity. 

Fig.‘7 

~i~in a certain range of conditions ahead of the wave front it is not possible to obtain 
a continuous structure with the use of the considered model, but it is possible to con m 
struct a solution by introducing at some section inside the structure a jump of volume 
charge density and maintaining all remaining parameters constant, A similar situation 
takes place when p # 0, at += 0, and a0 = 0. 

The surface I.,,O in whose 6 -neighborhood pass integral curves which define 
the wave structure is shown in Fig. 7 in the region @ < u < 1 I The equation of 
surface Lo is in this case of the form 

4 = I.?3 + U + a (u - 1) (U - @)I-’ (4.1) 
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When E, > E, , line 11’ has a maximum at point u -= u,, and when 

& < J% it has asymptotes formed by generatrices of the parabolic cylinder 

E = - u - cc (u - 1) (u - p) 

Values of un and E,,, are determined by formulas (3.2). Line I, is the 
intersection line of surface LX0 and the plane u = u,. 

The integral curve 1 which passes near the initial point (I, EIY 41) in the 

region where L, < 0 when Er > E,, s runs above surface LrO in the p- 
neighborhood of line rr” (section 1)) then deviates from the plane u = 1, inter- 
sects surface Lx’, and runs under it in its 6 -neighborhood close to the plane B == 

El (section 2). At point (u,,, El, gnt) where qm is determined by (4. I) with 
u = U, and E = E, the curve intersects surface _&” and then runs above it in 

the direction of decreasing U (section 3). Near the plane u = p the curve turns 
and, without intersecting Llo, runs along line l’s’ (section 4). The described 
pattern of behavior of integral curve 1 may be established by the method set forth in 
Sect. 2. That integral curve defines the shock wave structure ahead of which the field 
is continuous (E, = E,). It is evident that if conditions ahead of the wave frontsat- 
isfy inequality (3.3 ) inside the structure the volume charge density variation is non - 
monotonic. The maximum of V is at that point 5 = 5, where the gas velocity 
u =Um. 

The integral curve If which passes through the small neighborhood of the ini- 
tial point (1, El, 41) defines the shock wave structure at whose front the electric field 
is constant and E ( E, , Figure I shows the case when sections 5 - 9 of integral 

curve II lie in the region where L, > 0, which is possible when El < EB and 
Em < EA (parameters E.4 and EB are defined by formulas (2.1) ) . 

Curve II runs near Ilo under surface L,” (section 5)‘ then, deviates 
from the plane in = 1 in the neighborhood of the initial point and, after intersecting 

surface LID runs above it along line I,’ close to the plane E = E, (section 6). 

Since I,” has a vertical asymptote) the charge density q increases along curve II 
in the direction of decreasing U. With increasing (I the integral curve gradually 

deviates from the plane B = F, and, when q _ 8-l , begins to proceed along the 
parabolic cylinder (4.2) in its fi -neighborhood in the direction of increasing E 

(section 7) and tends to approach the plane u= u,. Then curve II intersects 

surface LX0 at a point of line I,. After that intersection the derivative drf 1 & 

changes its sign, and the charge density begins to decrease along the integral curve in 
the direction of decreasing u. Since the sign on derivative dE I ds remains un- 

changed, the integral curve runs under surface L1’ along the generatrix of the para- 
bolic cylinder (4.2)) which lies near the intersection line of planes u = u,. and 

E = E, (section 8). At that stage curve II leaves the 6 -neighborhood ofsur- 
face &‘, but remains in some of its 6’ -neighborhood f 0 < r < 1). It can be 

seen from (1.X), (1.17 ), and (2.2 ) that, when 1 L, 1 - 6’ and p - E-I , para - 
meters a, and a2 are of order 6r, and a3 = o(i). Consequently, the in - 

tegral curve in section 8 is close to vertical, and the charge density there decreases 

rapidly, while the variation of parameters u and E is small. When parameter 

P reaches the order of unity, the integral curve enters the S -neighborhood 

of surface &’ and runs near the plane E = E, approaching the plane u = S, 



Investigation of the structure of electrohydrodynamic shock wavea 1067 

since there the derivatives du I ds and dq Ids are of the same order and the 
derivativedE / dsis small. Near the plane u = 3 curve II turns in the direction of in- 

creasing E and runs along the line rao (section 9 ) . 
Interpretation of the various sections of integral curve II in the physical plane 

is similar to that given in Sects. 2 and 3. Sections 5 and 9 correspond to perfect sub- 
sonic flows, and sections 6 - 8 define the variations of flow parameters Within the 

structure. The projection of curve II on the plane q = 0 (the dash-dot line III ) 

shows that the fieldintensity behind the wave front is E, = E,. 

We denote by (u,, E,, qn) the coordinates of point D of intersection of 
line 1, withline AB of the intersection of surfaces L,” and L,“. The val- 

ues of E, and 9o are determined by the equations L,= 0 and L, = 0 with 

U = u,. If EB< El<ED, the line 1,’ of intersection of the plane E = El 

with surface L,o can have either one or two points of intersection with line A B. 

When E, < E, that point is in region u. > U, in the first case, while in the second 

(when EA< E,< E, ) the points lie on both sides of the plane u = u, . In both 
cases p = 0 (1) at the intersection points. These intersection points are singular points 

of Eq. (1.16 ) in the plane E = const. Analysis shows that the point lying in region 

u> *m is a focus (point F in Fig. 8 ) , and the point lying in region U< urn 
is a saddle (point C in Fig. 8 ), A qualitative pattern of Integral curve behavior is 
shown in Fig. 8 in their projection on the plane E= E, when E, > E,. 

The solution which determines the 
shock wave structure can be obtained 
using the two separatrices: curve I 
which curls around point F, and the 

Integral curve II which passes through 

point c. As shown in Section 2, in 
order to pass from curve I to curve II 

when u=uF, it is necessary to 

introduce a charge density jump and 
maintain all other parameters constant. 
Such jump can be smoothed out by ta- 
king into account one more dissipation 

mechanism, viz. the charged particle 

viscosity. Intensity of the shock with 

S-=gl is low. 
Fig. 8 

5. Shock wave structure whenat # O,am # O,‘and p = O.The simultaneous 
introduction in Ohm’s law of terms related to thermal diffusion and VISCOUS momentum 

transport of the mixture in the electric field also yields under specific conditions a new 
relationship for flow parameters at the wave front. For simplicity let us consider the 

case in which /_L =o. The input system of equations reduces to the equation 

dE/du = +, Lb= +Eg,+g,, g,=u+c(u-I)@-fi) (5*1) 
g, = u + cl& - 1) (u - p), c = a, (y + 1) / 4y. 
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The behavior of integral curves of Eq. (5.1) considerably depends on the position of 
CuNe L,O whose equation in region p < u < 1 in the uE -plane is L, = 0 . 
That curve passes the intersection points of straight lines u = p and u = 1 with 
line E = - u , and is the indicatrix of the vertical directions of integral curves of 

Eq. (5.1). 
Let us, first, consider the case when the equation gr = 0 has no roots in the 

inkwal p < u ( 1 . The constraint on flow parameters that corresponds to that 
condition is of the form c ( (1 - P”z)-“. Let also a ) c >> 0 and let the in- 

equality (3.3 ) for which the maximum (3.2) of parabola E I: - g, lies in region 

B<U<l , be satisfied. The values of E determined by the equality R =: 

ug,-l in the interval p < u < ‘i are greater than unity, Hence in region E > 0 

cLlrVe LSD lies in the interval 0 < EC ( 1 above parabola E = - g,, and be- 
low the latter in region E ( 0. In Fig. 3 the dash line represents L,’ and the 
dash-dot lines 6 and 7 represent, respectively, lines E = ug,-i and E = - g, 
in the case when point (3.2) lies in region E < 0 . 

Analysis of the behavior of integral curves of Eq. (5.1) is similar to that carried 
out in Sect. 3. The position of maxima of curve Lb0 in the interval p < u < 1 
is significant. The coordinates of these maxima are determined by the equations 

c (8 - 24”) g, + ug, (1 _t 2au - a - a@) LI= 0 (5.2) 

E ‘L: - ugzgl-l 

With the indicated above constrain@ on parameters and with the inequality 
a - c > (1 - fi)-” satisfied, there exists in the interval p < 24 < 1 at least 

one out of two possible maxima in the general case. We denote by (u,, E,) the 
coordinates of the highest maximum of curve &so in the interval @ < u < 1. 

Analysis of the structure shows that when the field intensity ahead of the wave 
front El > E, and E, > - p, the electric field at the wave front is continuous 

(Es = El), and a surface charge is absent, 
If the field intensity ahead of the wave from El < E,, the electric field at 

the wave front is discontinuous, and a surface charge is formed in the electric field. 
The charge is produced by friction of charged particles with neutral ones, thermal dif- 
fusion, and by the effect of viscous momentum transfer of the mixture on diffusion. If 

in this case E, > - fi, the field intensity behind the wave front satisfies the re- 

lation 

If E, < - fi, the field behind the wave front is E, = -fi. In that case 

thermal diffusion and viscous momentum transfer of the mixture do not contribute to 
the formation of surface charge. Note that when I-J z (1 _ fi”2)-2, then 1~~ z f~“’ 

and E, = 0, hence the field behind the the front is Es = 0. 
Let us now consider the case when the parameters ahead of the front are such 

that c > (1 - @“z)-~. The equation g, = 0 has then roots in the interval 

6 < u < 1 and, consequently, line L so has vertical asymptotes in that interval. 

Let a < c. Curve Lso has three branches (fig. 9 ) . We denote by 

(u**, E,,) the coordinates of the central branch minimum whose ordinate is the 

smallest. The abscissa uXa of that minimum lies between the roots of equation 
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g, = 0 and is the root of the first of Eqs. (5.2 ) , The left-and right-hand branches 
of L,O lie in the interval fl < u < $ below the straight line E = -u. 

Figure 9 shows that, when the electric field ahead of the wave front E1 < - B, 
a surface charge is generated at the wave and the field behind the front satisfies the 
relation E, = - p. The structure of shock waves with discontinuities is defined by 

integral curves of type I. Note that the surface charge is the same as in the case when 
only friction between charged and neutral particles is taken into account, but the pat- 
tern of flow parameter variation within the structure is in the considered case different. 

Gig. 9 Fig. 10 

Analysis of the structure shows that, when --fi < E, < E**, the electric 

field at the wave front is continuous and there is no surface charge (integral curve of 

type II 1. 
Let us consider integral curves of type III which pass through the neighbor - 

hood of the initial point (1, E,) and 

& = E,, 
(5.4) 

Each of these integral curves Gas a nearly horizontal section 1 which deviates 
from the supersonic branch of line L,” in the neighborhood of point (1, E,) to which 

in the physical plane corresponds to the region of abrupt velocity change in an almost 
constant field intensity, Section 2 which runs along the central branch of line&,” in its 
small neighborhood defines in the physical plane a narrow region of abrupt change of 
velocity and electric field. Then these integral curves deviate from line Lo at various 
electric field intensities bounded by the condition 

E >/ E,, (5.5) 

and run with a small slope in the direction of the subsonic branch of line L,” (section 
3 ) . These integral curves define the shock wave structure with a jump of the electric 
field at the wave front. The parameters of flow ahead of such wavea are linked by the 

supplementary relation (5.4 ) , Todetermine the state behind the front it is necessary 

to specify one of the flow parameters. 
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The electric field intensity may be specified within the limits (5.5 ) Electrohydrody - 
namic waves of a similar kind but related to a different physical situation were con- 

sidered in [2]. When the initial field intensity E, > E,,, shock waves defined by the 
model considered here have no structure, This is shown by the behavior of integral cur- 
ves of type IV which depart from line 7.1 = f when E, > E,,, intersect the cen- 
tral branch of line LSD, enter the region of negative electric current, and then move in 
that region along line L5” with a finite positive slope. 

Let a > c. Curve L.s" has in region p < u < 1 three branches of which 
the central one lies in region E < 0, and the left-and right-hand branches approach 
the vertical asymptotes with positive and negative slopes, respectively. In that case 
shock waves have no structure, This is so because none of the integral curves departing 
from the supersonic branch of line L,' can intersect the right-hand branch of line Lo, 
since throughout the region to the right of the right-hand asymptote the slope of integral 
curves approaching sections of the right-hand branch of line L,* and the slopes of those 
sections are negative, while an intersection is possible only with a line of verticalslope 

(Fig. 10 1. 
Let us briefly consider the case of r - - (1 - p”z) -2, The equation g1 := 0 

has then a multiple root, hence line L,” has in the interval p < IC < 1 two bran- 
ches separated by the vertical asymptote II = pi’? When (r < c, both branches are 
in region E *< 0 and p < u < 1 below the straight line E 2 - u . The results of 
structure inv~~gation are the same as when a = c = 0. When d > c, theshock waves 
have no structure, since both branches tend to the asymptote in the region of positive E. 
This case is similar to that of a > c > (1 - j31’2)-2, 

If a < 0 and c < 0, then for ( c1 1 < 1 c 1 the results are similar to those when 

parameters a and c are positive and equations & = 0 and pa == 0 have no roots 

intheinterval B < u < 1. When 1 a I > I c [ thesupplementary relationships are the 
same as when a = c = 0. 
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